床スラブとの合成効果に期待した鉄骨梁横補剛工法

-YZ 補剛工法の改良-

Improvement of a Lateral Bracing Method for H-shaped Steel Beams Using Bracing Effects of Reinforced Concrete Slab

相羽均修*1 五十嵐治人*2 土方勝一郎*3

概 要

鉄骨梁の横座屈を防止する手段として、横補剛材を設けることが一般的であるが、横補剛 材、ボルト、ガセットプレートなどが必要となり、コスト、工期の面では好ましくない。一 方、梁上に設けるシアコネクタにより床スラブと合成構造とすることで、横補剛材と同等の 効果を期待できる。2019年に2列配置のシアコネクタにより床スラブと合成構造を成す鉄 骨梁の横座屈性状を実験的、解析的に検討し、床スラブによる鉄骨梁の補剛効果を期待した 工法(YZ 補剛工法)を開発した¹⁾。しかし、シアコネクタの配置や床開口等に制限があるた め、適用範囲が限定されている。

そこで、これらの制限緩和と作業効率の向上を目的として、梁鉄骨サイズや床スラブの種 類、開口の配置等を実験パラメータにした正負交番繰り返し載荷実験を行い、構造性能を確 認し適用範囲を拡大した。

key words:鉄骨梁、横座屈、床スラブ、フレーム実験、シアコネクタ

1. はじめに

建物の上部構造の鉄骨梁は、床スラブとシアコネクタ で一体化した合成梁とし、横座屈を防止するための横補 剛材を設けるのが一般的である。梁の材軸方向に連続し て取り付く床スラブには梁の耐力、剛性の向上が図れる が、その他に、これまで評価してなかった効果として、梁 の横座屈変形の拘束が期待できる。この点に着目し、既報 ¹⁾²⁾において、2列配置のシアコネクタにより床スラブと 合成構造を成す鉄骨梁の横補剛効果により、目標とする 梁の変形性能を確保できることを報告し、2019年に、従 来必要であった横補剛材を省略できる YZ 補剛工法を開発 した。本工法の特徴として、梁の片側にのみスラブを有し ている場合は、床スラブの横補剛効果を確保するための 補強筋(以下、YZ 補強筋と呼ぶ)を設けることが挙げられ る(図-1参照)。

しかし、シアコネクタの配置や床開口等に制限がある ことで適用範囲が限定される課題が残った。そこで、実験 目的を下記に示す 4 項目とし、合成梁のフレーム実験に より構造性能を評価した。

実験目的

①シアコネクタの配置制限緩和(1列配置可能に) ②床開口の制限緩和(スパン端部連続開口可能に) ③YZ 補強筋の仕様拡大(普通鉄筋を使用可能に) ④H形鋼の適用範囲拡大(せい幅比、ウェブ幅厚比)

*1 Masanobu AIBA *2 Haruhito IGARASHI *3 Katsuichirou HIJIKATA

技術本部技術研究所 研究員 技術本部技術研究所 主席研究員 顧問 博士(工学)

2. 実験概要

2.1 試験体

試験体は、両端において角形鋼管の柱と剛接合された H型鋼の梁と、梁と合成された床スラブからなる。これは、 多層骨組から取り出した1層1スパンの部分骨組を模擬 したものである。試験体一覧を表-1に、試験体の形状お よび寸法を図-2に示す。全試験体とも縮尺を 5/9 とし、 床スラブは片側スラブ、シアコネクタは1列配置とした。 また、鉄骨柱断面(□-300×300×19)、直交梁断面(CT-150 ×150×6.5×9)、スパン(6000mm)も全試験体共通である。

試験体名	梁				想定部材ランク			
	使用材	λb	d/B	d/tw	(フランジ/ウェブ)	スラブ厚(mm)	スラブ筋	開口
F21	$BH-496 \times 138 \times 9 \times 9$	1.41	7.06	53.1	FA/FB		D4@80	なし
F22	$BH-484 \times 184 \times 9 \times 12$	0.99	5.13	51.1	FA/FA	44		均等
F23	BH-516×170×9×9	1.17	5.96	55.3	FB/FB			
F24	$BH-484 \times 184 \times 9 \times 12$	0.99	5.13	51.1	FA/FA	100	D6@120	端部連続
土涌車頂	梁:SM490A, 直交梁:SN400B,スラブ筋:SD295, シアコネクタ:1-φ10@115(L=50), λ _b :横座屈細長比, d/B:せい幅比,							
六過爭項	d/tw:ウェブ幅厚比, 開口:図-2b)、c)参照							

表-1 試験体一覧

既報¹⁾の実験では、鉄骨柱と床スラブの間で力が伝達 されないよう 20mmのクリアランスを設けていたが、本実 験では実施工時と同様となるようにクリアランスを設け なかった。また、本実験では、両側スラブと比較し、横座 屈補剛効果が低い、片側のみスラブを有する場合を対象 とした。

試験体のパラメータは、「梁鉄骨のサイズ」、「床スラブ 開口の有無および配置」、「床スラブの種類」とし、計4体 を製作した。試験体 F21 はせい幅比、試験体 F23 はウェ ブ幅厚比が既往の実験¹⁾よりも大きい値とした。また、試 験体 F22、F23 は梁際に直径 170mm (実大 300mm)の開口を、 中心間隔が開口直径の3倍となる様に連続的に設けた。 試験体 F24 は F22 と同一の梁断面とし、柱近傍に縁間距 離50mmで3連続の開口を設けた。床スラブは試験体F21、 F22、F23 が溝形スラブを、F24 は等厚スラブを想定してい る。デッキプレートを想定した溝形スラブは、山上のみを 模擬した RC スラブとし、スラブ部分は厚さ 44mm(実大 80mm)とし、梁上には 42mm(実大 75mm)のかさ上げを設け た。型枠工法スラブを想定した等厚スラブは、厚さ 100mm (実大 180mm)の RC スラブとした。また、床スラブと 鉄骨梁の結合にはシアコネクタとして頭付きスタッド (φ 10、L=50)を用い、文献³⁾で規定される完全合成梁を満 足するように配置間隔を設定した。シアコネクタのへり あき部の端抜破壊防止のため、梁端部からLo/10(Lo:内法 長さ=5700mm)の範囲に YZ 補強筋を図-3 に示すように配 置した。

試験体に使用した材料の試験結果を表-2、3に示す。 コンクリートの材料試験結果は1体目加力の前日と4体 目加力の翌日の平均値である。

2.2 実験方法

実験は図-4に示す加力装置を用いて行った。2本の柱 の柱頭および柱脚を反曲点と想定したピン支持とし、頂 部にロードセルを介して油圧ジャッキを水平に設置した。 また、柱には面外拘束装置を設置して面外、ねじれ変形を 拘束した。加力は、正負交番の漸増繰返しとし、左右の柱 が同一変形角となるように油圧ジャッキを調整して水平 力を与え、梁に逆対称の曲げが発生するようにした。

水平力は梁の部材変形角 θ による制御とし、 θ は床ス ラブを考慮しない全塑性曲げモーメント到達時の部材変 形角の計算値 θ_P に対して設定した。試験体 F21、F22、F24 はFA ランクの性能を確認するため θ =0.25 θ_P 、0.5 θ_P 、 θ_P 、2 θ_P 、3 θ_P まで2サイクルずつ正負漸増載荷を行 った後、 θ =6 θ_P まで正載荷を、試験体 F23 は FB ランクの 性能を確認するため θ =0.25 θ_P 、0.5 θ_P 、 θ_P 、2 θ_P ま で2サイクルずつ正負漸増載荷を行った後、 θ =4 θ_P まで 正載荷を行った。

表-2 コンクリートの材料試験結果

圧縮強度	ヤング係数	割裂強度	単位体積重量
(N/mm^2)	(kN/mm^2)	(N/mm^2)	(kN/m ³)
21.1	24.7	2.07	21.6

表-3 鋼材の材料試験結果							
材料 σ _y		σy	F_{t}	Е	使用部位		
D4	SD295	336	516	169	スラブ筋(F21, 22, 23)		
D6	00200	350	535	175	スラブ筋(F24), YZ 補強筋		
φ10	SWRCH10A	439	487	201	シアコネクタ		
1)t9		352	507	208	梁ウェブ(F22, F23, F24) 梁フランジ(F23)		
②t9	SM490A	378	524	204	梁ウェブ(F21) 梁フランジ(F21)		
t12		339	502	208	梁フランジ(F22, F24)		
t16	SN490C	348	512	211	ダイヤフラム		
t19	BCR295	408	439	183	柱		
備考	σ _y :降伏点(N/mm²), F _t :引張強度(N/mm²),						
	E:ヤング係数(kN/mm²)						

図-4 加力装置

2.3 計測計画

実験では、油圧ジャッキに取り付けたロードセルで南 北柱のそれぞれの水平力 P を計測し、柱頂部に取り付け た高感度変位計にて水平変形 δ を計測した。梁の部材変 形角 θ は δ から柱、接合部の変形成分を除去して算定し た。また、柱、梁、床スラブ主筋、補強筋の各所のひずみ 量を、貼付したひずみゲージにて計測した。

3. 実験結果

3.1 水平カー柱部材角の関係

各試験体の梁端部に作用した曲げモーメント M と部材 変形角θの関係を図-5に、試験体の損傷状況の代表例を 写真-1、2に示す。図中の曲げモーメント M、部材変形角 θは、共に梁両端部の平均値で表している。また、図中の 横線は床スラブを考慮していない鉄骨梁の降伏曲げモー メント My、全塑性曲げモーメント Mp を示し、縦線は全塑 性曲げモーメント到達時部材変形角の計算値θpおよび後 述する目標部材変形角を示している。さらに、●印は上下 の梁フランジに貼付したひずみゲージで計測された値の うち、どれか一枚が最初に降伏ひずみに達した点を、◆印 は正負それぞれの最大値を示す。

試験体 F21 では、 θ =0.25 θ_P サイクル時に床スラブの 曲げひび割れが生じた。 θ = θ_P サイクル時に梁フランジが 降伏、 θ =2 θ_P サイクル時に全塑性曲げモーメントに達し、 その後、最大耐力を示した。さらに、床スラブの圧壊の発 生および下フランジの局部座屈が目視で確認され、曲げ モーメントが低下した。 θ =3 θ_P サイクル時の1回目に直 交梁上のシアコネクタに端抜破壊が生じ、2回目で大きく 曲げモーメントが低下したため、加力を終了した。

試験体 F22 では、 $\theta = 0.25 \theta_P + d_P n$ 時に床スラブの 曲げひび割れが生じた。 $\theta = \theta_P + d_P n$ 時に梁フランジが 降伏し、 $\theta = 2 \theta_P + d_P n$ 時に全塑性曲げモーメントに達 した。 $\theta = 3 \theta_P + d_P n$ 時に床スラブの圧壊の発生および 下フランジの局部座屈が目視で確認され、直交梁上のシ アコネクタに端抜破壊が生じた。また、最大耐力を示した 後、わずかに曲げモーメントが低下した。その後 $\theta = 6 \theta_P$ サイクル終了時まで比較的安定した変形性能を示した。

試験体 F23 では、θ=0.25θ μサイクル時に床スラブの 3.2 変形性能 曲げひび割れが生じた。 $\theta = \theta_P$ サイクル時に梁フランジが 降伏し、θ=2θ_Pサイクル時に床スラブの圧壊、および下 はFB ランク、F22、F24 は FA ランクを有していることが フランジの局部座屈が目視で確認されたが、全塑性曲げ 分かり、表-1に示すフランジ、ウェブの想定部材ランク モーメントに達した。 $\theta = 4 \theta_P$ サイクル時に直交梁上のシ アコネクタに端抜破壊が生じ、曲げモーメントが低下し た。

試験体 F24 では、 $\theta = 0.25 \theta_P$ サイクル時に床スラブの 曲げひび割れが生じた。θ=θ_Pサイクル時に梁フランジが 幅厚比のランクと同等の変形性能を有していた。 降伏し、θ=2θ_Pサイクル時に全塑性曲げモーメントに達 した。θ=3θ,サイクル時に床スラブの圧壊、および下フ ランジの局部座屈が目視で確認され、直交梁上のシアコ ネクタに端抜破壊が生じた。θ=6θ_Pサイクル時に最大値 を生じた後、わずかに曲げモーメントが低下したが、最終 部材変形角まで安定した変形性能を示した。

加力終了後、梁端部の床スラブを撤去し、シアコネクタ の状況を確認した。その結果、全ての試験体においてシア コネクタに破断などの損傷が生じていなかった。

a) 0.25 θ_P 床スラブ曲げひび割れ(F22)

c) 3 θ_P 床スラブ圧壊(F22)

各試験体の変形性能を表-4 に示す。試験体 F21、F23 と同等であった。ここで、 θuは全塑性曲げモーメント Mp に達した後、MP以上の耐力を保持した最大部材変形角で、 目標部材変形角は、塑性変形倍率(θu/θp-1)である。今 回の実験で実施した範囲においてはフランジ、ウェブの

表一4 変形性能

試験 体名	Mp	θ _P	θ "	$\theta_{\rm u}/\theta_{\rm P}$ –1	判定	想定部材 ランク			
F21	423	8.6	25.6	2.0	FB	FB			
F22	521	7.5	47.6	5.4	FA	FA			
F23	470	7.4	28.0	2.8	FB	FB			
F24	521	7.5	44.1	4.9	FA	FA			
備考	 M_P:全塑性曲げモーメント(kN・m)(計算値), θ_P:M_P時変形角(×10⁻³rad.)(計算値), θ_u:最大部材変形角(×10⁻³rad.)(実験値), 判定:θ_u/θ_P-1(に対する判定 FA≧4,FB≧2 想定部材ランク:フランジとウェブの幅厚比から 決まるランク(表-1)による)。 								

b) 0.25 θ_P 床スラブ曲げひび割れ(F24)

d) 3 θ_P 床スラブ圧壊(F24)

写真-1 試験体床スラブ開口周囲損傷状況

a) 2 θ_P 下フランジ局部座屈(F22)

b) 3 θ_P 直交梁端抜け(F22)

c) 最終破壊状況(F22)

d) 加力後 シアコネクタ(F22)

写真-2 試験体損傷状況

4. まとめ

試験体のパラメータを「梁鉄骨のサイズ」、「床スラブ開 口の有無および配置」、「床スラブの種類」としたフレーム 実験を実施した結果、以下に示す知見が得られた。いずれ の試験体も幅厚比の制限により決まる部材ランク以上の 変形性能を有しており、床スラブの横補剛効果が十分発 揮されることを確認した。

- ①シアコネクタの配置:完全合成梁分のシアコネクタを は十分である。
- ②床開口:今回実験で確認した大きさ、形状においては、 床開口による合成梁の横補剛効果への影響は見られな 3)日本建築学会:各種合成構造設計指針・同解説、2010 W.
- ③YZ 補強筋の仕様:今回実施した配筋方法による YZ 補強 筋では、合成梁上のシアコネクタには端抜破壊が見ら れず、十分な効果を発揮できている。
- ④H形鋼の形状:今回の実験を実施した合成梁であれば、 せい幅比 7.06 (F21)、ウェブ幅厚比 55.3 (F23) まで適 用範囲を広げても、梁全体の粘り強さは想定部材ラン クと同等以上の評価ができる。

【謝辞】

この開発は、矢作建設工業と共同で実施したものです。 開発を進めるにあたり、名古屋工業大学井戸田秀樹教授 にご指導いただきました。ここに謝意を表します。

【参考文献】

- 1) 五十嵐他: 床スラブとの合成効果に期待した鉄骨梁横 補剛工法、錢高組技報 No. 44、2019.11
- 配置した場合、1列配置としても床スラブの横補剛効果 2)深津他:床スラブとの合成効果を考慮した鉄骨梁横座 屈補剛工法の開発(その1~3)、日本建築学会大会梗概 集構造Ⅲpp.1067~1072、2019.9

4)日本建築学会:鋼構造限界状態設計指針·同解説、2010