建築物の外装材に作用する風荷重に関する研究

Study on wind load acting on building exterior materials

安部 剛*1

概 要

建築物の台風等による強風被害の多くは、屋根葺き材等の外装材に発生している。これらの被害 を未然に防ぐには、対象となる外装部位ごとに、適切なピーク風力係数を設定して外装材用風荷重 を求める必要がある。基規準に例示されていない外装部位の中で、設計者からの要望が多かった3 つの事例について風洞実験を行い、外装材用風荷重の精度をより向上させるための基礎的な資料を 整理した。

key words:外装材、風荷重、風洞実験、ピーク外圧係数、ピーク風力係数

1. はじめに

台風等による建築物の強風被害の多くは、屋根葺き材等 の外装材に発生している。外装材が被害を受けてしまうと、 当該建築物だけでなく、外装材が飛び散ったことにより2 次被害が発生する可能性がある。また、外装材の被害は、 建築物の外部だけに留まらず、外部ピロティー空間の軒天 などが被害を受けると、**写真-1**のように天井裏に風が吹 き込むことで天井ボードが落下したりして、室内側(ピロ ティー空間)に被害が発生することがある。

これらの強風被害を未然に防ぐには、対象となる外装 部位ごとに適切なピーク風力係数を設定して外装材用風 荷重を求める必要がある。ピーク風力係数やピーク外圧 係数は、図-1に示すように、矩形などの基本的な形状 に限り、建設省告示¹⁾や指針²⁾にその値が示されている が、外装部位によっては、これらの基規準に数値が示さ れていないものもあるため、風洞実験などを行い、それ らの値を求める必要がある。

また、集合住宅に付属する小規模建築物(倉庫等)のよ うな建築物の設計用風荷重を算定する場合、集合住宅か らのビル風による影響で小規模建築物の風荷重が増大す ることも考えられるが、いずれの基規準においても隣接 する建築物との相互作用や風速の割り増しに関する値な どは例示されていない。

そこで、本研究では、目隠し壁や庇に関するピーク風 カ係数および集合住宅等に付属する小規模建築物に関す るピーク外圧係数を風洞実験により求め、外装部位(屋 上目隠し壁や庇など)に関する設計実務上の基礎的な資 料を整理した。

2. 実験における外装部位の選定

風洞実験を実施するにあたり、ピーク風力係数の充実 を図るべき外装部位に関して、事前に構造設計者へヒア リングを実施した。ヒアリング内容は、外装材用風荷重 の設定に関して今後調べてほしいこと、現状の疑問点等 である。実験の候補に挙がった外装部位は、太陽光パネ ル、独立上屋、手摺、庇、ダブルスキン、目隠し壁、軒 天井、付属建物などであり、その中でも、目隠し壁、庇 および集合住宅などの高層建築物に付属する小規模建築

写真-1 台風による被害事例 2019 年 9 月 9 日の台風 15 号の天井面破壊状況

物の外装材用風荷重の情報がほしいとの要望が多かった。 理由としては、上述したように基規準に風力・外圧係数 の数値が示されていないためである。その他、大きな風 圧力が作用することが予想される外装材の隅角部や複雑 な建物配置などに関する内容も見られた。また、外装材 の範囲が明確でないという問題もある。例えば、外装材 を受ける胴縁などを外装材用風荷重として設計すべきか どうか等の意見も見られた。これらの内容を踏まえ、風 洞実験を行い、基規準に示されていない外装部位に関す る情報の充実を図ることは、耐風設計の精度を向上させ る上で有用であると考えられる。

3. 屋上目隠し壁^{3)、4)}

建築物の屋上に設置された設備機器用の目隠し壁を写 **真-2** に示す。現在、屋上目隠し壁に関する法的な基準 は定められていないが、一般的に、平成12年建設省告示 1454 号および 1458 号に示されている数値を用いて風荷 重を算定することが多い。屋上目隠し壁は、表・裏面共 に風による影響を受けやすく、適切に耐風設計がなされ ていないと飛散などの被害が発生しやすい。

一般に、屋上目隠し壁に作用する風圧力は、建物形状 (辺長比やアスペクト比)や壁面からの隔離距離の影響 を受けると考えられる。例えば、建物の辺長比によって は、風上側の目隠し壁で剥離した気流が、風下側で再び 建物や目隠し壁に衝突する再付着といった現象が起こる 可能性がある。このような現象の場合には、目隠し壁に は想定する方向と逆向きの風圧力が作用することも考え られる。

従って、建物形状や外壁面からの離隔距離の違いによ って屋上目隠し壁のピーク外圧係数やピーク風力係数が どのような影響を受けるかを風洞実験により明確にする 必要がある。

3.1 風洞実験の概要

風洞実験は東急建設(株)技術研究所の回流式境界層風 洞で行った(写真-3)。実験模型概要を図-2に示す。 模型の縮尺は1/100とし、風圧測定孔は目隠し壁模型の 表面と裏面にそれぞれ設けた。実験パラメータを表-1 に示す。辺長比 B/D は 1~3の3種類、目隠し壁の離隔距 離Xは0、D/15、D/6の3種類、実験気流は地表面粗 度区分Ⅱの境界層乱流、建物のアスペクト比 H/D は 3、 目隠し壁の高さ比 h/H は 1/9 である。実験風向は図-2 (a) に示すとおりWB面に正対する風向を0°として5°ピ ッチの 72 風向(360°)とし計測した。実験気流の鉛直分 布を図-3 に示す。目隠し壁頂部高さ H+h 位置における 乱れの強さは 14.4%である。風圧データはサンプリング 周波数1kHz で1風向あたり196、608 データ収録した。

表─│ 美駅ハフメータ					
粗度区分	辺長比 B/D	離隔距離 X	アスペクト比 H/D	高さ h/H	
Π	1, 2, 3	0、D/15、D/6	3	1/9	

写真-2 屋上目隠し壁の設置例

写真-3 実験模型設置状況 【回流式境界層風洞(東急建設(株)技術研究所)】

200

0 0

0.5

乱れの強さ*Iz*,風速比U_z/U₅₀₀ 図-3 実験気流の鉛直分布

1

1.5

3.2 外圧係数・風力係数の定義

目隠し壁の風力係数(C_f)は、式(1)に示すように目隠 し壁表面の外圧(P_e)と裏面の外圧(P_r)の差を時刻歴上で 求め、目隠し壁頂部高さにおける速度圧(q_{H+h})で無次元化 した。外圧係数および風力係数の定義を図-4に示す。

本報における外圧係数の符号は、目隠し壁の表裏面をそ れぞれ押す方向を正、逆方向(引っ張る方向)を負とした。 また、風力係数の符号は、目隠し壁を外側(表面)から建物 側に向かって押す方向を正、その逆方向を負とした。

風力係数のピーク値は平均化時間0.2秒、評価時間600 秒に相当する6組のアンサンブル平均により評価した。

$$C_{f} = (P_{e} - P_{r}) / q_{H+h} = C_{pe} - C_{pr}$$
(1)

C_{pe}:目隠し壁表面の外圧係数 (=P_e/q_{H+h})

 C_{pr} :目隠し壁裏面の外圧係数 (= P_r/q_{H+h})

3.3 実験結果

粗度区分Ⅱの実験結果から目隠し壁の離隔距離および 建物辺長比の影響について報告する。辺長比(B/D)と最大 ピーク風力係数(上中下段位置における全風向中の最大 値)の関係を図-5に示す。離隔距離 x=0 では、B/D が大 きくなるほど短辺側(WD 面)上段位置の最大ピーク風力 係数は大きくなり、長辺側(WB 面)では逆に小さくなる。 辺長比(B/D)と最小ピーク風力係数の関係を図-6 に示 す。B/D=2~3のWB面における最小ピーク風力係数は、 概ね上段位置で絶対値が大きくなるが、WD面においては 離隔の有無によって値に顕著な差がみられる。

離隔距離 X=0、上段位置における最大ピーク風力係数 とその時の発生風向角を図-7 に示す。横軸は建物コー ナー部を起点とする無次元距離 y/D とし、WB 面を正、WD 面を負で表した。最大ピーク風力係数は目隠し壁端部付 近ほど値が大きく、WD 面の側方(θ=180°付近)および裏 側(θ=270°付近)からの風向で全風向中の最大値となる。

X=0、 D/15、 D/6 の目隠し壁裏面における最小ピーク 外圧係数(上段端部測定点)の風向角による変化を図-8 に示す。風向角 180°および 270°付近に卓越したピーク が見られる。これは、目隠し壁上層部から発生する渦の 影響により風下側の目隠し壁裏面に強い負圧が生じたた めと考えられ、それにより最大ピーク風力係数が大きく なったものと考えられる。また、このピークは離隔を有 する目隠し壁にもみられ、離隔距離が大きくなるほど絶 対値が小さくなる傾向にある。

WB面

WD面

360

WD面

4

WB面

-▲ B/D=1

図-6 辺長比 B/D と最小ピーク風力係数の関係

4. 庇^{5)、6)}

物流倉庫などのトラック等の出入口上部に取り付けら れる庇の設置例を写真-4 に示す。現在、庇に関するピ ーク外圧係数やピーク風力係数は基規準には示されてい ない。庇および外壁面周りの風圧力の状況を図-9 に示 す。構造設計者は、庇が受ける風荷重を算定する際、庇 の出幅が大きくない場合や庇が建築物の中央付近に設置 される場合は、取り付けた庇の近傍の壁面の外圧係数の 値から、庇の外圧係数を推定していることが多い。これ は、庇の下で受ける圧力が同心円状に作用するという考 えによるものである。

底下面に作用する風圧力は、庇の出幅が大きい場合には、壁面から離れた位置(庇の端部付近)では、庇を押し上げる風圧力が小さくなることが考えられるが、その風圧力がどの程度小さくなるのか分からない状況であり、現状の設計方法では、安全側を考慮して壁面が受ける風圧を準用していることが多い。更に、庇上面に作用する風圧力は、建物高さが高い場合には、吹き下ろしの影響を受けると考えられるが、どの程度建物高さが影響を受けるのか分からない状況である。以上より、庇に作用する風圧力は非常に複雑であることが分かる。

従って、庇の出幅や建物高さの違いによって、庇のピ ーク外圧係数やピーク風力係数がどのような影響を受け るのかを風洞実験により、明確にする必要がある。

4.1 風洞実験の概要

風洞実験は東急建設(株)技術研究所の回流式境界層風 洞で行った(写真-5)。実験模型概要を図-10に示す。 模型の縮尺は1/200とし、風圧測定孔は庇の上下面およ び壁面に風圧測定孔を設けた。

実験パラメータを表-2 に示す。対象建物は、図-10 や表-2に示すように見付幅 B=600mm、奥行 D=300mm(辺 長比 D/B=0.5:一定)、建物高さ H=40~450mm、庇高さ h=40mm (h/H=0.09~1.0)、庇の出幅 L=15~80mm (L/D=0.05 ~0.27)とした。また、庇は建築物の長辺方向に設置し、 片側の端部を1スパン程度(50mm)切り欠いている。

写真-4 庇の設置例

図-9 庇および外壁面周りの風圧力状況

写真-5 実験模型設置状況 【回流式境界層風洞(東急建設(株)技術研究所)】

建物 高さ比 実験ケース 奥行 高さ 出幅 高さ h/H D (mm) B (mm) H (mm) W (mm) L(mm) h (mm) 40.75.110 Case 1~5 1.0~0.09 15 145,450 75,110 0.53~0.09 Case 6~9 600 300 550 60 40 145,450 75,110 Case 10~13 80 0.53~0.09 145,450

表-2 実験パラメータ

実験気流の鉛直分布を図-11に示す。実験気流は、図 -11に示すように地表面粗度区分III(べき指数 α =0.2) とし、庇の設置高さh(風洞床面から40mm)における乱れ の強さは 23.5%である。実験風向は、庇に正対する風向 を 0°として 5°ピッチの 72風向(360°)とした。実験風 速は、建物高さH(40~450mm)で8.2~12.8m/s、サンプ リング周波数 1kHz、1 風向あたりデータ数 131、072 (65,536 個×2 回)データ収録した。

本報における表および図の記号は、図-10(a)に示すように基準とした庇端部を0とし、基準とした庇端部からの距離(X)を庇長辺方向の幅(W=550mm)で除したものを庇端部からの距離(X/W)とする。また、庇の測定点の名称は、図-10(c)~(e)に示すとおり、庇先端の測定点から短辺方向に向かって、A列~E列(L=80mmの場合)と定義した。

4.2 外圧係数・風力係数の定義

庇の風力係数(C_f)は、式(2)に示すように庇上面の外 圧(P_u)と庇下面の外圧(P₁)の差を時刻歴上で求め、建物 頂部高さ(H)における速度圧(q_H)で無次元化した。また、 庇の外圧係数は、測定した風圧力を建物頂部高さ(H)にお ける速度圧(q_H)で無次元化した。

 $C_{f} = (P_{u} - P_{l}) / q_{H} = C_{pu} - C_{pl}$ (2)

C_{pu}:庇上面の外圧係数 (=P_u/q_H) C_{pl}:庇下面の外圧係数 (=P₁/q_H)

庇の外圧係数および風力係数の定義を図-12 に示す。 本報における外圧係数の符号は、庇上下面をそれぞれ押 す方向を正、逆方向(引っ張る方向)を負とした。また、 風力係数の符号は、風力が庇上面から下面に向かって作 用する方向を正、その逆方向を負とした。

庇の外圧係数および風力係数のピーク値は、実験で得られた時刻歴波形に実時間 0.5 秒に相当する移動平均を施し、評価時間 600 秒に相当するアンサンブル平均(平均数 10 組)によって評価した。

4.3 ピーク外圧係数の実験結果

庇の上面および下面に作用するピーク外圧係数の 72 風向中の最大値、最小値の実験結果について報告する。

(1) 庇の取り付け高さの違いによる影響

h/H=0.09、0.36 および 1.0 のケースについて、建物奥行 D に対する庇の出幅 L の比 L/D=0.05、0.27 における庇端

部からの無次元距離(X/W)とピーク外圧係数との関係を 図-13 に示す。図中の凡例(A列~E列)については、 図-10 に示す。

図-13 (a) h/H=1.0 においては、庇上面では、特に庇 が建物頂部に取り付く庇上部に建物壁面が存在しないた め、上部からの吹き下ろしの影響が無く、最小ピーク外 圧係数の絶対値が大きくなっていた。このように、庇の 上部の壁面の有無により、庇に作用する風圧力が大きく 異なる。庇下面では、最大ピーク外圧係数の絶対値は、 最小ピーク外圧係数の絶対値より大きくなっていた。こ れは、庇下の建物壁面に風が当たったことで、庇を下か ら上に押し上げる風圧が大きくなったことが考えられる。 庇上下面ともに、庇端部では、最大・最小ピーク外圧係 数の絶対値は大きめになっていた。

図-13 (b) h/H=0.36 においては、庇上面では、最大ピ ーク外圧係数・最小ピーク外圧係数ともに絶対値において は大きな違いは見られなかったが、庇端部においては、最 小ピーク外圧係数の絶対値が大きくなっていることが確 認できた。また、庇端部A列においては、C列、E列と比 較すると、最小ピーク外圧係数の絶対値は、大きくなって いた。これは、庇端部付近の乱れの強さの影響を受けるこ とより、接近流の乱れの強さの違いによるものと考えられ る。 庇下面では、最大ピーク外圧係数と最小ピーク外圧係 数の絶対値はほぼ同じであった。また、 庇端部では、最小 ピーク外圧係数の絶対値は若干大きくなっていた。

図-13 (c) h/H=0.09 においては、庇上面では全体的に 最大ピーク外圧係数の絶対値は、最小ピーク外圧係数よ り小さかった。また、庇端部では、最小ピーク外圧係数 の絶対値は、(a)、(b)の時と同様に大きくなっていた。 庇下面では、(b)の時と同様に全体的に最小ピーク外圧 係数の絶対値は、A列が大きくなっていた。 以上より、最大ピーク外圧係数は、実験ケースごとの 絶対値の違いはあるが、どのケースでも庇上下面におい ては、庇の幅方向に大きな変動は見られなかった。最小 ピーク外圧係数は、全体的に庇の上下面ともに端部ほど 絶対値が大きくなっていることが確認できた。

また、庇端部の切欠きの影響については、庇上面の建 物に最も近い測定点において両端部で差が見られる。こ の理由としては、建物隅角部からの剥離渦の影響である と考えられる。

図-13 庇端部からの無次元距離(X/W)とピーク外圧係数の関係

建築物高さHに対する庇高さhの比h/Hとピーク外圧係 数の関係を図-14に示す。図-14 (a) は庇上面、図-14 (b) は、庇下面を示す。図中には、庇先端(A列)にお ける端部および中央部の測定点それぞれ1 点の数値を示 している。図-14 (a)、(b) より、最大ピーク外圧係数 に関しては、上下面ともに端部・中央部で大きな差は見 られない。最小ピーク外圧係数に関しては、中央部と比 較して端部では絶対値が大きくなっている。

(2) 庇の出幅の違いによる影響

h/H=0.36 における庇の出幅と庇上下面のピーク外圧 係数の関係を図-15に示す。図-15は、すべて庇先端(A 列)の実験結果を示している。庇上面の最大ピーク外圧 係数に関しては、庇の出幅の増加に伴いわずかではある が減少する傾向が見られる。一方で、庇下面については、 上面ほど庇の出幅による影響は見られない。最小ピーク外 圧係数に関しては、庇の出幅の増加に伴い絶対値が増加 する傾向が見られる。

4.4 ピーク風力係数の実験結果

建築物高さに対する庇高さの比 h/H=1.0、庇の出幅 L/D=0.05 の場合の庇端部からの無次元距離(X/W)とピー ク風力係数の関係を図-16に示す。なお、ピーク風力係 数は72風向中の最大・最小値である。上述したとおり、 h/H=1.0 の場合には、庇上部の壁面からの吹き下ろしの 影響が無いため、庇上面に作用する負圧の絶対値が非常 に大きくなる。そのため、このケースでは庇に作用する 最小ピーク風力係数が-8.4 と非常に大きい値であった。 従って、h/H=1.0のケースとは違い、h/Hが小さい場合に は、庇上部の壁面からの吹き下ろしの影響が発生するこ とにより絶対値が小さくなる傾向がある。

図-14 建築物高さに対する庇高さ h/H とピーク外圧係数の関係(L/D=0.05)

図-16 庇端部からの無次元距離(X/W)とピーク風 カ係数の関係(h/H=1.0)(72風向中の最大最小値)

L/D=0.05 (case1~5)における建築物高さ(H)に対する 底高さ(h)の比 h/H とピーク風力係数の関係を図-17 に 示す。図中には、庇先端(A 列)における端部および中央 部の測定点各々1 点の実験結果を示している。最大・最 小ピーク風力係数ともに中央部と比較して端部の方が絶 対値が大きい。また、最大ピーク風力係数に関しては、 h/H の影響はそれ程大きくない。一方で、最小ピーク風 力係数に関しては、h/H が概ね 0.6 以下の場合、ほぼ一 定であるが、h/H が 0.6 を超えた場合、絶対値が非常に 大きくなっていることが確認できる。これは、図-13 (a) で考察したように庇上面に作用する吹き下ろしの有無に よるものである。

図-17 建築物高さに対する庇高さの比(h/H)と ピーク風カ係数の関係

4.5 壁面と庇下面におけるピーク外圧係数・風力係数

庇のピーク風力係数を算定する際には、庇下面のピー ク外圧係数として庇直下の壁面圧を準用する方法がある。 また、庇上面についても庇が屋根高さ(建物頂部)付近 に取り付く場合には、屋根面の圧力を庇上面に準用する ような方法も考えられる。このように、庇のピーク風力 係数の設定については、不確かな部分がある。

そこで、壁面のピーク外圧係数と庇下面のピーク外圧 係数の関係について着目し、それぞれの外圧係数を用い てピーク風力係数を求めた場合を検討する。

本報では、図-18 に示すように(図中赤枠)、庇につ いては、庇中央部および端部の測定点、壁面については 庇直下の測定点の実験結果を示す。

庇下面および庇直下の壁面のピーク外圧係数を図-19 に示す。庇の出幅が大きくなると、壁面に近接する測定 点 E 列では概ね一致しているが、壁面から離れた測定点 A 列では、壁面圧と庇下面の差が大きくなっている。特 に庇端部では風向角 90°付近、中央部では風向角 120° および 240°からの風に対して差が大きくなることが確 認できた。

庇上下面の差圧から算定したピーク風力係数と、庇上 面と壁面の差圧から算定したピーク風力係数を図-20 に示す。図中では、前者を(一般)、後者を(壁面)と表 記している。庇の出幅が大きくなると、壁面圧と庇下面 の外圧係数の差が大きくなるため、風力係数の差が大き くなっている。

図-19 庇下面および壁面のピーク外圧係数 h/H=0.36 L/D=0.27 【上図:端部、下図:中央部】

h/H=0.36 L/D=0.27【上図:端部、下図:中央部】

5. 集合住宅等に付属する小規模建築物⁷⁾

集合住宅等に付属する小規模な集会場や倉庫等の例を **写真-6** に示す。一般的に、地上付近と比べると上空で は、風速が大きく高層建物に衝突した風が、地上付近に 吹き下ろす現象(ビル風)が発生することがある。この ようにビル風が発生すると建物周辺を歩いている人が転 倒したり、周辺の建築物において外装材が被害を受ける ことがある。

現在、集合住宅などに付属する小規模建築物の外装材 用風荷重に関する法的な基準は定められていないが、前 述したとおり、高層建物の影響が大きいことが知られて いる。しかし、告示等では、集合住宅等に付属する小規 模建築物に関するピーク風力係数は、示されていないた め、風洞実験などによりピーク風力係数やピーク外圧係 数を明確にする必要がある。

写真-6 付属する小規模建築物の例

5.1 風洞実験の概要

風洞実験は、三井住友建設(株)技術研究所のエッフ ェル型境界層風洞で行った(写真-7)。実験模型は、実 験模型の縮尺は1/150とした。対象とする集合住宅は、 実スケールで、幅 B=15m~60m、奥行き D=15m、高さ H =30m、45m の計8種類とし、集合住宅が無い付属建築物 単体(Case0)を含めた合計9ケースとした。実験パラメー タを表-3に示す。

写真-7 実験模型設置状況 【エッフェル型境界層風洞(三井住友建設(株)技術研究所)】

表-3 実験/	ヾラ メ	ータ
---------	------	----

実験ケース	B:D:H	集合住宅模型(mm)		
	(1D=50mm)	В	D	н
Case O	集合住宅無し(付属建築物のみ)	-	-	-
Case 1	2:2:4	100	100	200
Case 2	2:2:6	100	100	300
Case 3	4:2:4	200	100	200
Case 4	4:2:6	200	100	300
Case 5	6:2:4	300	100	200
Case 6	6:2:6	300	100	300
Case 7	8:2:4	400	100	200
Case 8	8:2:6	400	100	300

実験模型の概要を図-21 に示す。付属模型は、一辺 b =50 mmの立方体(実スケール:1辺7.5m)とし、各壁面 中央部に3点(W1~W12)、屋根面に5点(R1~R5)の計17 点風圧測定孔を設けた。付属建築物模型の配置は、図-22 に示す。

図-22 付属建築物の配置

実験気流の鉛直分布を図-23 に示す。実験気流は、地 表面粗度区分III相当とし、実験風速は付属建築物模型高 さ h=50mm で 7.5m/s とした。乱れ強さは付属建築物模型 高さ h=50mm で 22.5%、集合住宅模型高さ H=200mm、300mm でそれぞれ 20.5%、17.7%である。実験風向は、0° ~ 355°まで 5°ピッチ計 72風向とした。風圧データ収録 はサンプリング周波数 1kHz で各風向 16,384 個×6 波 収録した。

5.2 外圧係数の定義

実験結果は、高さ300mm に設置したピトー管で得られ た速度圧を、付属建物模型高さh(模型スケール50mm、 実スケール7.5m)の速度圧に換算した値を用いて外圧係 数とした。

付属建築物の外圧係数の定義を図-24に示す。付属建築物における風圧係数の符号は、外壁面・屋根面を外側から建物側に向かって押す方向を正、その逆方向を負とした。

実験で得られた各測定点の風圧の時刻歴データに実時 間約 0.23 秒の移動平均(移動平均数 6 個)を施し、評 価時間約 600 秒に相当する 6 組のアンサンブル平均に よりピーク外圧係数を評価した。

図-24 付属建築物の外圧係数の定義

5.3 実験結果

Case2、4、6、8における配置番号1、3、5の外壁面中 央部(W2、W5、W8、W11)および屋根面中央部(R5)の結 果を表-4に示す。表中の値は、各ケースのピーク外圧 係数を付属建築物単体の実験結果(Case0)のピーク外圧 係数で除した比で示している。すなわち、表中の値が1.0 を超えるケースでは、集合住宅模型による影響で外圧係 数の絶対値が大きくなることを示している。また、表中 には最大値の発生した風圧測定孔を括弧内に示し、各模 型配置(配置番号1、3、5)における最大ピーク外圧係 数の比の最大値を太字(赤字)、最小ピーク外圧係数の比 の最大値を斜字(青字)で示している。

表-4 ピーク外圧係数比 外壁面中央部および屋根面中央部

実験 Case	集合住宅 模型		配置番号1		配置番号3		配置番号5	
			外壁面	屋根面	外壁面	屋根面	外壁面	屋根面
Case2		最大	0.96	2.12	1.16	2.77	0.93	2.04
		ピーク	(W11)	(R5)	(W8)	(R5)	(W5)	(R5)
		最小	1.14	1.01	1.14	1.07	1.03	0.98
		ピーク	(W2)	(R5)	(W11)	(R5)	(W5)	(R5)
Case4		最大	0.99	2.56	1.11	2.79	0.91	1.84
		ピーク	(W5)	(R5)	(W8)	(R5)	(W5)	(R5)
		最小	1.37	1.29	1.71	1.51	1.46	1.18
		ピーク	(W2)	(R5)	(W11)	(R5)	(W5)	(R5)
Case6		最大	0.94	3.03	1.10	2.99	0.90	2.44
		ピーク	(W11)	(R5)	(W8)	(R5)	(W5)	(R5)
		最小	1.17	1.50	<i>188</i>	1.71	1.82	1.59
		ピーク	(W2)	(R5)	(W5)	(R5)	(W5)	(R5)
Case8		最大	0.98	3.53	1.10	2.97	1.00	3.99
		ピーク	(W11)	(R5)	(W8)	(R5)	(W2)	(R5)
		最小	1.68	<u>161</u>	1.82	<i>2.01</i>	184	2.08
		ピーク	(W8)	(R5)	(W2)	(R5)	(W5)	(R5)

(1) 外壁面中央部(W2、W5、W8、W11)の結果

表-4 より、外壁面中央部の最小ピーク外圧係数の比 は、1.03~1.88 の値となっており、今回の実験ケースに おいては、集合住宅模型の幅が大きくなるほど値が大き くなっている。また、配置位置(1、3、5)で比較すると配 置番号3における値が大きくなっている。これは、集合 住宅模型からの吹き下ろしによる影響を受けているため と考えられる。一方で、最大ピーク外圧係数の比は、0.90 ~1.16 と最大でも1.16 倍であり、集合住宅模型の幅に よる違いはあまり見られなかった。今回の実験ケースに おいては、集合住宅模型が付属建築物も模型に与える影 響は最小ピーク外圧係数の方が大きい結果となった。

外壁面中央部にけるピーク外圧係数と風向角の関係を 図-25に示す。外壁面中央部の最大・最小ピーク外圧係 数の絶対値を比較すると、Case6 や Case8 のように集合 住宅模型の幅が大きくなると最小ピーク外圧係数の絶対 値の方が大きくなる傾向がみられる。

最大ピーク外圧係数については、集合住宅模型の影響 は、比較的小さい。また、最大値およびその発生風向角 は、集合住宅がある場合も集合住宅がない Case0 との差 が小さく、集合住宅による正圧への影響は小さいことが 確認できる。ただし、配置番号3のW8では、風向角180° ~225°付近において集合住宅模型により気流が遮蔽さ れるため、集合住宅模型の幅が大きいほどCase0と比較 して値が小さくなる。

最小ピーク外圧係数については、いずれの測定点にお いても、集合住宅模型の風下側となる風向角 180°付近 において集合住宅模型による剥離流や吹き下ろしの影響 で Case0 より値が大きくなり、その値は集合住宅模型の 幅が大きいほど大きくなる。

(2) 屋根面中央部(R5) の結果

屋根面中央部にけるピーク外圧係数と風向角の関係を 図-26に示す。表-4より、屋根面中央部の最小ピーク 外圧係数比は 0.98~2.08の値となり、外壁面と同様に集 合住宅模型の幅が大きくなるほど値は大きくなっている。

最大ピーク外圧係数の比は 1.84~3.99 と最小ピーク 外圧係数比と比較して大きい値となっている。これは図 -26 に示すように付属建築物単体の場合(Case0)の屋 根面中央部のピーク外圧係数が小さいため、比で表すと 値が大きくなっているが、ピーク外圧係数自体の絶対値 は最小ピーク外圧係数の方が大きい。

最大ピーク外圧係数については、集合住宅模型の風上 側となる風向角(配置番号1は風向角0°、配置番号5は 風向角90°)において、Case0より値が大きくなっており、 集合住宅模型に衝突した風による影響と考えられる。

一方、最小ピーク外圧係数については、外壁面と同様の風向角で絶対値が大きくなっており、配置番号 3、5 では最大で-5.0を超える値もあった。

図-25 外壁面中央部(W2、W5、W8、W11)のピーク外圧係数

6. まとめ

屋上目隠し壁や庇、また、集合住宅等に付属する小規 模建築物の外装材用風荷重を算定するために、必要なピ ーク外圧係数やピーク風力係数に関する情報を不足して いるという背景から、これらの情報を充実させるための 風洞実験を行い、外装材風荷重を求めるための基礎的な 資料を整理した。以下に外装部位ごとの実験結果を示す。 ①屋上目隠し壁

建物辺長比および目隠し壁の離隔距離が外圧係数や風 カ係数に与える影響について検討した。離隔のない目隠 し壁の上段部(短辺側)では、辺長比が大きくなるほど 最大・最小ピーク風力係数の絶対値が大きくなることが 確認できた。また、目隠し壁上層部から発生する渦の影 響により、目隠し壁裏面では強い負圧が作用し、離隔距 離が大きくなるほど最小ピーク外圧係数の絶対値が小さ くなることを確認した。

②庇

庇の出幅および建物高さが庇の外圧係数や風力係数に 与える影響について検討した。庇に作用する風圧力は、 建築物の高さに対する庇の高さの比h/Hの影響を大きく 受けることが確認できた。これは、庇の上部の壁面から の吹き下ろしの影響の有・無が大きな要因と考えられ、 h/H の値が大きい場合には、庇上面の最小ピーク外圧係 数の絶対値が非常に大きくなることに留意する必要があ る。また、壁面外圧係数と庇下面の外圧係数の関係を検 討した結果、庇の出幅が大きくなるに従って、壁面外圧 係数と庇下面の外圧係数の差が大きくなる傾向が確認で きた。したがって、庇の出幅が大きい場合に壁面圧を庇 下面の圧力として準用する場合には注意が必要である。 ③付属する小規模建築物

集合住宅等に付属する小規模建築物(倉庫、集会場等) の外壁面・屋根面のピーク外圧係数について、集合住宅 の規模や集合住宅に対する付属建築物の位置が、付属建 築物にどのような影響を受けるのかを検討した。本報で 示した実験結果より、集合住宅の規模については、付属 建築物の外壁面・屋根面における負のピーク外圧係数の 絶対値は、集合住宅模型の幅大きくなるほど大きくなる 傾向が見られた。また、付属建築物の位置については、 集合住宅模型のコーナー部からの剥離流や集合住宅の模 型壁面に衝突した風が吹き下ろす範囲に、付属建築物が配 置される場合、特に注意する必要があることが確認できた。

【謝辞】

本報告は、 淺沼組、安藤・間、 熊谷組、鴻池組、錢 高組、大日本土木、東亜建設工業、東急建設、飛島建設、 長谷工コーポレーション、三井住友建設の11社で構成さ れる外装材用風荷重研究会による共同研究成果をまとめ たものである。

【参考文献】

- 全国官報販売協同組合:2015 年版建築物の構造関係技 術基準解説書、pp. 440-447、2015.6
- 2)日本建築学会:建築物荷重指針·同解説(2015)、2015.2
- 3) 胡家龍、本田宏武、栗田剛、加藤優輝、安部剛、藤原 朝典:屋上目隠し壁に作用する風圧力特性(その1)目 隠し壁の離隔距離および建物辺長比の影響、日本建築 学会学術講演梗概集、pp.51-52、2020.9
- 4)本田宏武、栗田剛、胡家龍、扇谷匠己、岡崎充隆、伊藤真二:屋上目隠し壁に作用する風圧力特性(その2) 屋根面圧を用いたピーク風力係数、日本建築学会学術 講演梗概集、pp.53-54、2020.9
- 5)伊藤真二、原田雅俊、加藤優輝、本田宏武、大澤健、 鈴木健稔:物流倉庫などの大庇に作用する風力特性 そ の1 庇上下面のピーク外圧係数、日本建築学会学術 講演梗概集、pp.59-60、2020.9
- 6)原田雅俊、伊藤真二、加藤優輝、田中靖彦、栗田剛、 岡崎充隆:物流倉庫などの大庇に作用する風力特性 その2 壁面圧を用いたピーク風力係数、日本建築学会 学術講演梗概集、pp.61-62、2020.9
- 7)小島千里、作田美知子、山内豊英、岡崎充隆、扇谷匠 己、安部剛:集合住宅等に付属する小規模建築物のピー ク外圧係数、日本建築学会学術講演梗概集、pp. 43-44、 2020.9
- ※この論文は、2020年度日本建築学会大会梗概集^{3)~7)} を一部加筆・修正したものである。