床スラブとの合成効果に期待した鉄骨梁横補剛工法

Development of a lateral bracing method for H-shaped steel beams using bracing effects of reinforced concrete slab

五十嵐治人*1 相羽修均*2 鞆 伸之*3

概 要

鉄骨梁の設計において、横座屈に対する検討は欠かすことが出来ない。鉄骨梁の横座屈を 防止する手段として、横補剛材を設けることが一般的であり信頼性も高いが、横補剛材、ボ ルト、ガセットプレートなどが必要となり、コスト、工期の面では好ましくない。一方、建 物の梁は通常は床スラブと合成構造をなす。床スラブと合成された梁は、上フランジの水平 移動、梁材軸回りの回転を抑えられ、横座屈には有利である。

本工法は、この点を積極的に考慮して、床スラブによる横補剛効果を定量的に評価し、こ れまで使用してきた横補剛材を省力化してコストダウン、工期短縮を目的とする。ただし、 横補剛材は上下フランジの水平移動を拘束できるが、床スラブは上フランジのみ拘束が出来 るため、床スラブによる横補剛効果は万全とは言い難い。今回、フレーム実験および有限要 素法解析を実施し、その有用性を確認した。これらの結果について報告する。

key words: 鉄骨梁。横座屈、床スラブ、フレーム実験、シアコネクタ

1. はじめに

鉄骨造建築物の梁はH形鋼を使用するのが一般的であ る。H形鋼の特徴は、強軸に対して弱軸の断面2次モー メントが極端に小さい点である。この状態で強軸回りに 曲げモーメントを受けると、梁全体が横に倒れる横座屈 を生じる恐れがある。この場合、十分な構造性能が得ら れず、最悪の場合は建物が崩壊する恐れがある。

これに対し、現行設計では梁が横座屈しない様、小梁 等による横補剛材を設けることとしている。本工法は、 頭付きスタッド等のシアコネクタで梁と合成構造をなす 鉄筋コンクリート造の床スラブを横補剛材として評価す ることで、上述の横座屈を防止するための横補剛材を省 略して、コストダウン、工期短縮を図ることを目的とす る。

更に、図-1 のように片側のみスラブを有している場合は、シアコネクタのへりあきが小さいことから、低い耐力で側方の被りコンクリートが破壊する可能性がある。 本工法ではこの場合、通常柱付近の隅角部に配筋するひび割れ防止筋を、シアコネクタを囲うように配筋し、へりあき部への「補強筋」に兼用した。これにより配筋が 煩雑となることの防止を図った。

本報では、フレーム実験の概要と結果、更に有限要素法解析の結果について報告する。

2. 実験概要

2.1 試験体

本実験は、2本の角形鋼管の柱とH形鋼の梁によって 構成された床スラブを有するフレーム試験体に対し、床 スラブによる鉄骨梁の横補剛効果について検証を行った。 本実験の試験体一覧を表-1に、試験体F1、F2の形状お よび寸法を図-2に示す。試験体は多層骨組から取り出 した1層1スパンの部分骨組とし、縮尺は5/9とした。 試験体のパラメータは、「梁鉄骨のサイズ」、「床スラブの 配置」、「床スラブの種類」とし計4体を製作した。なお、 鉄骨柱断面、ダイヤフラム、スパンは全て同一である。

図-1 片側のみスラブが取りつく梁

*1 Haruhito IGARASHI *2 Masanobu AIBA *3 Nobuyuki TOMO 技術本部技術研究所 主席研究員 技術本部技術研究所 研究員 設計統轄部構造設計部 また、鉄骨柱と床スラブの間には、床スラブに直接圧縮 力が作用しないように 20mm のクリアランスを設けた。試 験体 F1 は標準試験体で片側床スラブ付き、試験体 F2 は 両側床スラブ付きの試験体、試験体 F3 は片側床スラブで 床スラブをデッキスラブと想定した試験体、試験体 F4 は梁鉄骨断面が異なる試験体である。

試験体 F1、F2、F3 の梁材は JIS 規格の一般的なH形鋼 の最大サイズ H-900×300×16×28 を想定し、幅厚比がほぼ 同等となるようなH形鋼を選定した。

試験 体名	梁	幅厚比		床スラブ				
		フランジ	ウェブ	形状	厚さ (mm)	スラブ筋	補強筋	
F1	H-500 × 150 × 9 × 12	6.25	52.9	片側	83	D6@120 縦横	D4@150 ダブル	
F2				両側	83	D6@120 縦横	-	
F3				片側	44/42	D4@80 縦横	D4@150 シングル	
F4	H−530 × 230 × 9 × 12	9.58	56.2	片側	83	D6@120 縦横	D4@150 シングル	
共通 事項	柱 : □- 300 × 16(BCR295) 梁 : SM490A 柱芯間距離 : 6,000mm ダイヤフラム : t16 床スラブ :F3 は山上 44mm、溝高さ 42mm のデッキスラブを示す。							

表-1 試験体概要

図-2 試験体概要(上; F1、下: F2)

試験体の RC スラブは一般的な形状とし、厚さ 83 (実 大 150) mm とした。デッキスラブは山上のみを模擬した RC スラブとし、スラブ部分は厚さ 44 (実大 80) mm、梁 上にデッキ高さ分の 42 (実大 75) mm のかさ上げを設け た。

また、RC スラブと鉄骨梁の結合にはシアコネクタとし て頭付きスタッドを用い、文献³⁾で規定される完全合成 梁を満足するように本数等を設定した。さらに、片側ス ラブ付き試験体には、頭付きスタッドの縁あき部の損傷 防止のため、梁端部から梁の内法長の 1/10 の範囲に補強 筋を配置した。

材料試験結果を表-2 に示す。コンクリートの結果の 値は、1 体目加力前、4 体目加力後に実施した試験結果の 平均値である。

2.2 実験概要

実験は図-3に示す載荷装置を用いて行った。2本の柱 の柱頭および柱脚を反曲点としてピン支持にて固定し、 頂部にロードセルを介して油圧ジャッキを水平に連結し た。また、柱には面外への変形、ねじれ変形を拘束する 目的で面外拘束装置を設置した。

加力は、左右の柱が同一変形角となるように油圧ジャ ッキを調整しながら水平力を与え、梁に逆対称曲げモー メントを生じるように、正負交番の繰返し加力とした。 水平力の載荷は、柱のピン支持間距離 h_o (=3000mm)に対 する柱頭の相対水平変位 δ の比の相対部材角 R(= δ/h_o) による変位制御とし、その載荷プログラムは、R=0.005、 0.01、0.015、0.02、0.03 および 0.04rad.を正負 2 サイ クルずつ行い、最後に R=0.05rad.を正載荷側のみ行っ た。

2.3 計測計画

実験では、水平力 Pを2基の水平ジャッキに取り付け たロードセルにて、水平変形 δを柱の頂部に取り付けた 2 台の高感度変位計にて計測した。また柱、梁、スラブ 主筋、補強筋、頭付きスタッドの各所に関してそのひず み量を、貼付したひずみゲージにて計測した。

表-2 材料試験結果

(単位:N/mm2)

(半世:N/mmz)											
		圧約	圧縮強度		ヤング係数	割裂強度					
	ンクリート	•	19.3		22000	1.84					
鋼材	降伏 強度	引張 強度	ヤング 係数		使用部位						
t9	376	545	202000		梁ウェブ						
t12	370	562	201000		梁フランジ						
t16	355	418	187000		柱、ダイヤフラム						
D4	363	510	170000		スラブ筋(F3)、補強筋						
D6	331	495	176000		スラブ筋(F1、F2、F4)						
φ10	385	490	19100	00	頭付きスタッド						

3. 実験結果

3.1 水平力一柱部材角関係

各試験体柱頭部に作用した水平力と柱の部材角の関係 を図-4 に示す。ここで、図中の水平力、部材角は、共 に左右の柱の平均値とした。また、図中の横線は床スラ ブの合成効果を考えない純鉄骨梁の曲げ降伏モーメント 時水平力、全塑性曲げモーメント時水平力である。また、 上フランジ、下フランジ降伏時のステップを併せて示す。 これらは、添付したひずみゲージで計測された値のうち、 どれか一枚が最初に降伏ひずみに達した点を示す。その 他最大荷重、端部で溶接部に破断が生じた点も示す。こ れは、梁端部に大きな音が発生し、荷重が大きく低下し た点を破断と定義した。

試験体 F1 では、R = 1/200 サイクル時に床スラブの曲 げひび割れが生じた。R = 1/100 サイクル時に下フランジ が降伏し、R = 1/67 サイクル時に全塑性曲げ計算値に達 した。R = 1/50 サイクル時に下フランジに局部座屈が目 視にて確認され、R = 1/33 時に最大荷重を生じた。R = 1/25サイクルの 2 回目の負加力時、R = 1/20 サイクルの正加 力時に下フランジに破断が生じて大きく荷重が低下した。

試験体 F2 では、R = 1/200 サイクル時に床スラブの曲 げひび割れが生じた。R = 1/100 サイクル時に鉄骨梁上下 フランジが降伏し、曲げ降伏時の計算値に、R = 1/67 サ イクル時に全塑性曲げ時の計算値に達した。R = 1/33 サ イクル時に下フランジに局部座屈が目視にて確認され、 最大荷重を生じた。R = 1/20 サイクルの正加力時に下フ ランジに破断が生じて荷重が低下した。

試験体 F3 では、R = 1/200 サイクル時において床スラ ブの曲げひび割れが生じた。R = 1/100 サイクル時に鉄骨 梁上下フランジが降伏し、曲げ降伏時の計算値に、R=1/67 サイクル時に全塑性曲げ時の計算値に達した。R=1/50 サイクル時に下フランジに局部座屈が目視にて確 認され、R = 1/33 サイクル時に最大荷重を生じた。R = 1/25サイクル時には梁のねじれに伴う床スラブ損傷が確認さ れた。R = 1/25 サイクルの 2 回目の負加力時、R = 1/20サイクル時の正加力時に下フランジに破断が生じて荷重 が低下した。 試験体 F4 では、R = 1/200 サイクル時において床スラ ブの曲げひび割れが生じた。R = 1/100 サイクル時に鉄骨 梁上下フランジが降伏した。R = 1/67 サイクル時に曲げ 降伏時の計算値および全塑性曲げ時の計算値に達した。R=1/50 サイクル時に下フランジに局部座屈が目視にて確 認された。R = 1/33 サイクル時に最大荷重を生じた。そ の後、荷重低下を生じたが、最終サイクルまで梁端部に 下フランジの破断は生じなかった。

全ての試験体とも、早期に横座屈が発生することなく、 全塑性曲げモーメントを十分発揮することが確認された。

3.2 フランジの面外変形

梁H形鋼のフランジで計測した梁の材軸直交方向変形 量を図-5 に示す。左側、右側は各々上、下フランジの 計測結果を示し、X 軸は材軸方向の計測位置(X=0、6000 は柱芯位置)を、Y 軸は梁の材軸直交方向変形量(床ス ラブが付いていない方向が正方向)を示している。ここ では、各部材角の正加力1回目のピーク時のデータを用 いており、変形量は最大値を50mmとし、それ以上は50mm として表記した。全塑性曲げモーメントが発現した *R* =1/67 の変形角においては、両フランジともに、試験体 F1、F3 はほぼ同程度の変形量を示し、試験体 F2、F4 は 試験体 F1と比較し変形量は少ない。試験体 F2 の上フラ ンジにおいては 1mm 以下の変形量で殆ど変形を生じてい なかった。

R=1/50 サイクル時では試験体 F1、F3 の下フランジの 変形量が大きくなり、R=1/25 サイクル時では試験体 F2 においても下フランジの変形量は大きくなった。試験体 F4 の変形量は実験の最後まで 10mm 以下であった。

4. 有限要素法解析

4.1 モデル化

今回実施した構造実験の試験体結果について、有限要素法解析による検証を行った。解析モデルを図-6 に示す。また、解析の仕様、拘束条件等を併せて示す。梁の初期不整は材軸直交 Y 方向のみ式(1)に従って与えた。これは梁の内法スパンの1次モードで1/1000、2次モードで1/10000の不整を与えたこととなる。

$$u = 5.7 \cos\left(\frac{x}{5700}\pi\right) + 0.057 \sin\left(\frac{x}{5700}2\pi\right)$$
(1)
x:スパン中央を0とした時の材軸方向位置

材料非線形は梁フランジ(t=12mm)、梁ウェブ(t=9mm) のみ与えた。柱およびダイヤフラム(t=16mm)は線形とし た。材料試験結果のヤング係数、材料強度、ひずみ硬化 を使用して、文献⁴⁾に基づき、応力 σ -ひずみ ϵ 関係は 式(2)により真応力 σ_t -真ひずみ ϵ_t 関係で定義した。

 $\sigma_{t} = \sigma(\mathbf{l} + \varepsilon)$ $\varepsilon_{t} = \ln(\mathbf{l} + \varepsilon)$ (2) 降伏曲面は von Mises とし、正負漸増繰返しの解析では 移動硬化則を採用した。スラブの断面性能は線形として 梁要素でモデル化した。断面形状は試験体の形状のまま、 全てを有効幅として考慮した。シアコネクタは、ゲージ 方向に並ぶ2本分の性能を1個のせん断ばね、回転ばね として定義した。せん断ばね剛性 k_uは文献^{5,6,7)}を参考 に、回転ばね剛性 k_βは文献^{5,8)}を参考に定めた。

図-6 解析モデル概要、仮定

図-7 解析モデル接合部、梁上部分詳細

ここで、実験では直交梁にもシアコネクタを打設して いるため、梁の応力はシアコネクタから直交梁を通じて 柱に伝達されることを考慮し、スラブを図-7 に示す様 に柱の中心までモデル化し、剛体要素で隅角部の直交梁 分のシアコネクタのばねと連結した。図は両側スラブ付 き梁である F2 のものを示す。その他の試験体の剛体要素 は片側のみ定義した。

4.2 解析結果

以上、4.1 の仕様で実施した有限要素法解析と実験結 果を比較したものを図-8 に示す。図中の横線は純鉄骨 梁の全塑性曲げ時水平力 P_p である。 $R=50\times10^{-3}$ rad.まで を対象とした。

この結果、 $R = 30 \times 10^{-3}$ rad.以下の範囲では、解析結果 は実験結果に対して、ほぼ安全側の評価となっているこ とが分かる。ただし、試験体 F1 や F3 で見られるように、 $R = 40 \times 10^{-3}$ rad.に関しては、繰返しによる耐力低下を 表現できていない。これは実験ではこの時点ではフラン ジ端部が破断しているのに対して、解析ではそうした破 断をモデル化していないことが原因と考えられる。

ただし、総合的に判断すると、概ね両者ともに良好な 対応を示したと考えられ、今回設定した解析モデルの妥 当性が確認された。

5. まとめ

鉄骨梁の横座屈防止に床スラブを積極的に評価する項 法の開発を試み、提案した工法の構造性能の確認のため フレーム実験を実施し、更に有限要素法解析によってそ の再現を試みた。この結果、実験では床スラブの横補剛 効果が確認され、有限要素法解析では、その妥当性が確 認された。今後は、本工法を実物件に積極的に採用し、 更なる技術の改良を目指していく。

【謝辞】

この開発は、矢作建設工業と共同で実施したものであ る。開発を進めるにあたり、井戸田秀樹教授(名古屋工業 大学)には多くのご助言、ご指導を賜りました。この場を もって、深甚なる謝意を表します。

【参考文献】

- 1)日本建築学会:鋼構造座屈設計指針、2018.2
- 2)日本建築学会:鋼構造設計規準-許容応力度設計法-、 2005.9
- 3) 日本建築学会:各種合成構造設計指針·同解説、2010.11
- 4)小野徹郎、佐藤篤司:金属系素材の応力-盃度関係の 定式化、日本建築学会論文報告集、pp. 177~184、2000.6
- 5)日本建築学会:鋼構造物の座屈に関する諸問題 2013、 5章付録 5.1、5.2、pp.86~87、2013
- 6)日本建築学会:各種合成構造設計指針・同解説、p.10(13)式、2010
- 7)赤尾親助、栗田章光、平城弘一:頭付きスタッドの押 抜き挙動に及ぼすコンクリートの打込み方向の影響、 日本鋼構造協会テクニカルレポート、No. 35、pp. 25~ 34、1996.11
- 8)日本建築学会:各種合成構造設計指針・同解説、p.236(1)式、(2)式、2010